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Abstract—Over the past few years, we have witnessed a
radical change in the architectures and infrastructures of web
applications. Traditional monolithic systems are nowadays getting
replaced by microservices-based architectures, which have be-
come the natural choice for web application development due to
portability, scalability, and ease of deployment. At the same time,
due to its popularity, this architecture is now the target of specific
cyberattacks. In the past, honeypots have been demonstrated
to be valuable tools for collecting real-world attack data and
understanding the methods that attackers adopt. However, to
the best of our knowledge, there are no existing honeypots
based on microservices architectures, which introduce new and
different characteristics in the infrastructure. In this paper, we
propose HONEYKUBE, a novel honeypot design that employs the
microservices architecture for a web application. To address the
challenges introduced by the highly dynamic nature of this archi-
tecture, we design an effective and scalable monitoring system
that builds on top of the well-known Kubernetes orchestrator.
We deploy our honeypot and collect approximately 850 GB of
network and system data through our experiments. We also
evaluate the fingerprintability of HONEYKUBE using a state-of-
the-art reconnaissance tool. We will release our data and source
code to facilitate more research in this field.

Index Terms—Microservices, Kubernetes, Honeypots, Web ap-
plications, Web security

I. INTRODUCTION

Microservices architecture evolved from the traditional
Service-Oriented Architecture (SOA) and, in recent years,
became the de-facto standard for developing large web appli-
cations. The change in the business landscape post-COVID-
19 has boosted the global popularity of microservices for
cloud applications. The recent report on the “Global Cloud
Microservices Industry” predicted the global market for cloud
microservices to reach $4.1 billion by 2030 from $981.6
million in 2022 [1]. Tech giants like Amazon, Netflix, Spotify,
and Uber have also contributed to the increase in popularity
of microservices by adopting and endorsing them [2], [3]. The
modular paradigm of microservices dictates that applications
are decomposed into loosely coupled, independent parts, each
running within an isolated container. There are several benefits
to this modular architecture, including scalability, faster de-
ployment, and security benefits like the separation of concerns.
However, its decentralized nature poses fundamental chal-
lenges in fortifying the security of these environments. With
the increased adoption of microservices, there is also a rise in
the motivation amongst attackers to find innovative methods

to compromise them. In the last few years, we have witnessed
numerous attacks against such containerized systems [4]–[11].
These attacks ranged from infected docker images pushed to
Docker Hub [9] to the development of malware to break out
of containers and establish a backdoor [8]. Because of the
fundamental differences in the underlying technology, attacks
targeting microservices-based web applications differ from
traditional attacks designed for monolithic applications. Since
these differences exist in methods and targeted vulnerabil-
ities, traditional intrusion detection and prevention systems
(designed for monolithic systems) are less effective when
applied in containerized environments [10], [11]. Hence, to
properly understand the differences in attack patterns and
design effective security solutions, we need real-world data
about the methods adopted by attackers when infiltrating
microservices-based web applications.

Honeypots are one of the main tools for gathering such
real-world data. The honeynet project1 developed honeypots
to facilitate data collection from genuine attacks and use that
data to identify attack patterns. Spitzner defined honeypots as
“decoy computer resources whose value lies in being probed,
attacked, or compromised” [12]. Since decoy systems have
no production value, any access attempt or interaction with
these systems is considered a probe, scan, or attack. All the
system activities are logged and analyzed to better understand
attackers’ behavior. The insights gained from honeypots have
been vital in advancing security defenses in academic and
industrial settings [13]–[25].

The amount and the quality of the data collected from the
honeypot depend on a) the level of interaction permitted to
the user in the system—low, medium, and high interaction
honeypots—and b) the resemblance of the honeypot to a
real system. Low-interaction honeypots consist of emulated
protocols or network services without exposing the complete
functionality of the operating system. Due to the limited
interaction, they capture a limited amount of information about
the attackers’ actions. Whereas high-interaction honeypots are
real systems, imitating production systems with open vulner-
abilities. Although the higher interaction in these honeypots
provides more insights into the attacks, they pose a greater risk
of getting used for real malicious campaigns, e.g., as part of a

1https://www.honeynet.org/
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botnet. Thus, they are quite expensive to deploy and maintain.
In this research, we design a new web honeypot, HON-

EYKUBE, using the microservices architecture. We build
HONEYKUBE as a realistic web application and expose it
to the Internet to collect attack data. Our application uses
Kubernetes for container orchestration and Google Kubernetes
Engine (GKE) for deployment. The monitoring system design
of this honeypot consists of capturing interaction activities
at multiple observation points to accommodate the modular
conditions of microservices. HONEYKUBE collects the system
calls executed within each container and all network interac-
tions with the honeypot, including internal flows between the
microservices.

We deployed HONEYKUBE for one month and collected
nearly 850 GB of data consisting of system trace files, network
traces, and additional log files.
In short, our paper makes the following contributions:

• We present a scalable monitoring and detection technique
to record the runtime activity of microservices-based web
applications.

• We leverage our monitoring framework to design and
implement HONEYKUBE, the first web honeypot based
on a microservices architecture.

• We collect and release a dataset of real-world attacks
to web-based containerized environments. This data will
foster future research in understanding the attackers’
behavior and attack patterns.

In the spirit of open science, our source code and data are pub-
licly available at https://github.com/utwente-scs/honeykube.

II. BACKGROUND

In this section, we describe the microservices architecture
and the Kubernetes platform, a container orchestrator for
microservices management.

Microservices. Microservices-based architecture is an appli-
cation development approach where separate components of a
software design are created and deployed as isolated services.
Each microservice is designed to meet a specific functional
requirement, such as user management, payments, and sending
emails. These microservices communicate with other services
via network-based interfaces, such as remote procedural calls
(RPC) and API calls. Unlike a single database in monolithic ar-
chitecture, every microservice can use the database best suited
for its requirements. This creates a loosely coupled system
that allows each service to be scaled, deployed, managed, and
updated independently. Containers share the kernel with the
host machine and use kernel features such as namespaces to
isolate processes while controlling resource usages such as
CPU and memory. Hence, allowing each microservice to run
in its custom environment, independent of other microservices.

Kubernetes. Building large, complex applications such as
Amazon and Uber require many microservices to support all
features. For instance, Uber’s application uses more than 2,000
microservices [26]. We require orchestration tools such as

Kubernetes (k8s) [27] to automate the monitoring and manage-
ment of these microservices. A cluster in k8s is a distributed
computing setup consisting of a set of worker machines called
nodes. A node is an abstraction of a machine and can be
either physical or virtual. Figure 1 assists in visualizing the
K8s cluster and its components. The microservices run on the
nodes. The control plane is the cluster orchestrator handling
the scaling and scheduling of the microservices. The core
of the control plane is the K8s API server that enables its’
communication with the nodes to ensure their health and
manage their state. Each node includes a running agent kubelet
for this communication.

K8s employs an additional abstraction to group one or more
containers, sharing network and storage resources, called a
pod. Hence, the containers in each pod can communicate with
each other using localhost. A pod is an ephemeral resource
and loses its state upon restart. Any data requiring persistence
should use persistent volumes within the pods for storage.
Each pod is assigned a unique private IP address, which
changes with every restart. The pods remain isolated by default
until they are configured to enable communication (internal
or external) to the cluster. A logical set of pods that work
together to fulfill one design requirement can be configured
together as a microservice, along with the access policy using a
service. Service is an abstract method to expose the application
running a set of pods as a network service [28]. The IP address
assigned to a service does not change throughout its exis-
tence. An API object, called ingress, exposes these services
to the outside world. Ingress provides load balancing, SSL
termination, and name-based virtual hosting capabilities [29].
With Ingress, we can expose HTTP and HTTPS routes from
the Internet to services inside the cluster. Figure 1 provides a
visual depiction of the relation between Ingress, Service, and
the pods within the cluster.

III. THREAT MODEL

Our goal is to monitor the runtime activity of a
microservices-based web application to record the effects of
cyber threats on the honeypot. We assume that the attackers
aim to escalate privileges to gain access to the host systems
from the containers. We set up security defenses to limit the
attack surface by ensuring the containers run as unprivileged
users with limited capabilities. We describe these defenses
in detail in Section VI. We assume that the attackers cannot
gain access to other cloud resources from our Google Cloud
Platform (GCP) account [30], [31]. We also assume that
the attackers cannot shut down the experiment and use the
resources for malicious purposes. We base our assumption on
the strictness of the default Identity and Access Management
(IAM) in GCP. Every compute engine uses a service account to
define its access identity. We use the default service account
that is configured with limited access. Our final assumption
is that the attackers cannot discover or tamper with HON-
EYKUBE’s monitoring system to evade detection since we use
resources within the cluster to store the monitoring data. It
is a common assumption in threat monitoring systems [32],
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Fig. 1: Detailed architecture of a K8s cluster showing its various components. The cluster is a combination of nodes and a control plane. A Node is an abstraction for a machine.
The control plane is the cluster orchestrator. The dotted lines between them depict the communication channels between the nodes and the control plane. The application containers
run on the nodes. A pod is an abstraction that groups containers that share network resources and volume. By default, a pod remains isolated from the outside world and requires
a service resource to enable external communication. Ingress is an API object that facilitates exposing a service to the internet via a load balancer.

[33]. Despite the assumption, we take some precautions (as
we mention in Section V) to minimize the damage in the case
of a breach.

IV. HONEYKUBE DESIGN

We aim to devise a web honeypot using microservices
to collect data about cyberattacks. Naturally, honeypots are
designed as baits for attackers. So, the more realistic the trap,
the higher the chances of the attackers biting. To this end, we
set the following objectives for our design:
Fingerprintability: If the attackers realize that the attacked

system is a honeypot, they will not attempt to compromise
it. Hence, it should be hard to distinguish the honeypot
from a real system. Network reconnaissance tools, such
as Nmap [34] and Shodan [35], should find it hard to
fingerprint it as a honeypot.

Interaction Level: The honeypot should provide consider-
able interaction surfaces to engage the attackers to enable
real-world data collection.

Monitoring: The honeypot should be able to effectively and
efficiently monitor and record the activities performed by
the attackers.

Security Measures: While the honeypot is intentionally de-
signed to be exploitable, we need to prevent attackers
from causing damage to others on the Internet. Therefore,
it is essential to introduce security measures to prevent
misuse, such as sending phishing emails or performing
DDoS attacks.

A. Design Overview

HONEYKUBE’s design focuses on fulfilling the require-
ments stated above. The monitoring setup is the most essential
part of a honeypot since it is responsible for the collection of

data from the attackers’ interactions. The architecture consists
of multiple microservices, communicating both internally with
each other and externally with the rest of the Internet. There-
fore, our honeypot monitors runtime activity at four levels:
a) External network traffic, for identifying reconnaissance
attacks, initial access, command & control, and potential
data exfiltration; b) Internal network traffic, for tracking
lateral movement and potential privilege escalation; c) System
calls, for reconstructing the attackers actions within containers
and nodes; d) System logs: for tracking and correlating the
propagation of attacks throughout the rest of the cluster in the
form of node failure, container crashes, etc.

We use an open-source application as a baseline to build
a realistic web-based application on top of our monitoring
infrastructure. Employing a real-world application reduces
the chances of fingerprinting the honeypot from its system
settings, as shown in previous research [36]. Hence, this
increases the chances of the attackers taking the bait. At the
same time, we introduce significant changes to the original
open-source application. Then, we enlarge the playing ground
for the attackers by injecting vulnerabilities in the honeypot.
These vulnerabilities allow attackers to breach the system and
move laterally within the cluster, improving the quality of the
data we collect. Lastly, we try to minimize the damage an
attacker can cause if they gain complete control of the system.
We employ measures to restrict the traffic from the containers
and the nodes and set up security contexts to prevent privilege
escalation and escape from the containers to the host system.

B. Design Details

Monitoring. We design a monitoring setup to capture all
inbound and outbound network traffic from each microservice.
As the Internet-facing interface is also a microservice, this



setup captures the external network traffic to and from the
cluster, along with the internal network traffic. Next, we
capture all system calls executed inside each container and
node within the cluster to reconstruct all the performed actions
after gaining initial access. Since the system calls are executed
in the kernel space, and the containers share the kernel with
the host machines, i.e., the nodes, we set up syscall capture in
the nodes. Finally, we collect logs from all computing units
within the cluster, including the K8s control plane.

Fingerprintability. We use a deployment-ready open-source
web application designed using the microservices architec-
ture as a baseline for our honeypot to give it a realistic
look and feel. This application, developed by Google Cloud
Platform (GCP), imitates an e-commerce website [37]. Since
this induces the risk of the attackers being familiar with the
demo website and hence identifying it, we change the original
layout of the application and add microservices with new
functionalities. Each of these microservices consists of a single
container encapsulated in a pod. The final application consists
of 14 pods, each hosting a microservice.

Interaction Level. A honeypot requires a large interaction sur-
face to keep the attackers engaged and facilitate the collection
of good-quality data. Remember that a microservices architec-
ture consists of multiple nodes, pods, and containers, among
other K8s objects. Our application’s exploitable attack surface
contains 14 microservices spread across 4 nodes and 14 pods.
Additionally, we add vulnerabilities to these microservices to
increase their exploitability and facilitate the attackers during
their malicious activities. This includes breaching the system,
gaining access to (fake) sensitive information, and moving
laterally within the cluster.

Security Measures. We employ security measures on the
honeypot to minimize the impact of the attacks on other
machines. We limit the network activity of the honeypot using
security contexts in K8s and restrict all unnecessary outbound
traffic to block outgoing DDoS attacks and spam emails.
We prevent the attackers from escaping the containers by
reducing the privileges from the containers and using Role-
Based Access Control. The details of all the security measures
are given in Section VI. While these measures reduce the
interaction surface, they increase the realism of the honeypot
since real production-level applications have similar security
measures in place to protect them.

C. Challenges

Designing the monitoring setup for the microservices archi-
tecture comes with a few challenges. Here, we dive into these
challenges and how we overcome them.

Hiding Monitoring Setup. Attackers should be able to inter-
act with the honeypot without detecting that they are being
observed. Capturing the inbound and outbound traffic from
each microservice requires running a monitoring tool along
with every microservice. Such a process can be easily detected
by scanning for the active processes from within the container.
Therefore, we use sidecar containers (a container providing

supporting features to the main application container within
the same pod) to capture and store all network traffic to and
from that pod. With sidecar containers, we hide the monitoring
process from the application process and avoid immediate
detection and tampering by attackers.

Capturing Attack-Related Syscalls. Due to the distributed
nature of the microservices architecture, capturing system calls
from all the system’s components is already expensive. Since
we capture system calls at the kernel level (of nodes), we
also capture system calls generated by our HONEYKUBE, in
addition to the ones made by attackers. However, the analysis
of attacks requires only attack-related syscalls. Therefore, we
need to distinguish the syscalls executed by the attackers from
the rest of the syscalls introduced by our HONEYKUBE. To
this end, we run an intrusion detection system (IDS) to detect
suspicious behavior. Each time the IDS triggers an alert, we
store the related syscalls for further investigation. We use a
conservative strategy for this detection since collecting extra
data from false alarms is preferable to missing important attack
data. With this method, we improve the efficiency of the data
analysis process while also reducing the number of collected
systems trace files (SCAP). Although there is still a risk of
missing out on some attack data, this method significantly
improves the efficiency of the storage and analysis of the
collected data, which would be otherwise unfeasible.

V. IMPLEMENTATION

While our design is platform-independent and can be run
on any K8s compatible platform, we deploy HONEYKUBE on
the Google Kubernetes Engine (GKE).

A. Monitoring Setup

Our monitoring infrastructure captures two main types of
data: network traffic and system calls. The two mechanisms
require different access levels within the system, and hence,
we place them at separate observation points within the
cluster. Figure 2 shows the architecture of these mechanisms in
HONEYKUBE. Moreover, we configure the K8s infrastructure
to collect additional information in log files, including K8s
audit logs (i.e., logs from the control plane containing the
chronological record of calls made to the K8s API server)
and system logs from all computing units in the cluster.

Network Traffic Capture. We use a sidecar container running
tcpdump to automatically collect all raw network traffic
starting on pod creation. Due to the ephemeral nature of pods,
PCAP files collected by tcpdump are written to persistent
volumes inside pods, ensuring data is preserved when a pod
is removed. While our tcpdump containers only passively
observe traffic from other containers, advanced attackers may
potentially attempt to gain access to these containers and the
stored PCAP files. Thus, we periodically retrieve these files
from our persistent volumes and store them locally.

System Calls Capture. We use Sysdig [38], which is a
combination of several system-level monitoring tools, such as
strace and htop, to capture system calls into system trace
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Fig. 2: In-depth view of HONEYKUBE. We have a cluster with four nodes and a control plane. To capture the network traffic, we run tcpdump on a sidecar container in each pod.
We use persistent volumes in the pods to prevent the loss of the captured trace files. The Sysdig capture process runs on the node machines and uses circular file rotation. Falco
(IDS) runs on a pod in each node and raises an alert on detecting suspicious behavior. The nodes use this alert to permanently store the captured trace files.

files (SCAP). Recall that we are mainly interested in capturing
and filtering syscalls related to attacks in order to contain the
size of the system trace files. Since syscall execution takes
place at the kernel level, we set up the Sysdig process on each
node. We configure this process to use a circular file storage
mechanism where the oldest files are deleted as new ones are
written, ensuring to store a fixed number (n) of files on the
system. We run Falco [39], a cloud-native runtime security
detection tool, to identify suspicious activities and raise alerts.
Falco operates by running privileged containers on a separate
pod on each node to access the host kernel. Whenever an alert
is triggered, we store the syscall trace files permanently for the
next 1000 seconds (∼17 minutes) to prevent them from being
deleted by the file rotation system. While Falco can actively
notify us of alerts, such notifications could be intercepted by
an attacker, making them aware of our honeypot. Hence, we
passively poll Falco logs using kubetail [40].

B. Web Application

We base our decoy web application on the GCP microser-
vices demo [37]. While the base application provides a realistic
K8s microservices architecture, the application layout may be
easily recognized as a fake webshop, and some of its microser-
vices are not production-ready. Therefore, we redesign the
application to make it more realistic. We migrate the product
catalog to a MySQL database from a text file and populate
it with new products. We also add functionalities for user
login and registration, adding two additional microservices:
the MySQL database and a Flask-based API service to access
the database.

C. Vulnerabilities

We introduce security vulnerabilities in our honeypot based
on the Azure Security Center’s K8s threat matrix [30], [31].
This threat matrix is similar to the MITRE ATT&CK frame-
work2, consisting of tactics and techniques used by attackers
in a K8s environment. We use this framework as a baseline
for creating exploitable kill chains for attackers and map the
added vulnerabilities to the adopted techniques. Injecting such
vulnerabilities, we ensure that the attackers can exploit at least
one path within the honeypot. At the same time, this does not
limit their actions inside the cluster. The attackers can still
take different steps to exploit other vulnerabilities specific to
the K8s and microservices architecture.

Initial Access. We present the application as vulnerable to bait
the attackers by printing errors and stack traces with software
versions and database names on the user interface [41]. These
bad coding practices make it evident that the application is
vulnerable and ripe for exploitation. The information leaked
via stack traces informs the attackers that the application
uses version v1.11.5 of Golang, which is vulnerable to CRLF
attacks (CVE-2019-9741 [42]). Moreover, we set up an SSH
server in the frontend (UI) microservice with weak credentials
(admin:password123) to enable the attackers to get access
to the system (CWE-1391 [43]). We store these credentials
in a publically available text file on the frontend of the
web application, hashed with MD5. Through the Vulnerable
application technique from the K8 threat matrix [30], [31], we
offer attackers initial access to our cluster.

2https://attack.mitre.org/
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Execution. The next step in the kill chain is for attackers to
execute arbitrary code within the cluster. A CRLF attack on
the UI, developed with Golang v1.11.5, can further escalate
into more malicious attacks such as Cross-Site Scripting (XSS)
and page injection attacks(CWE-79 [44]). Additionally, we
allow SQL injection attacks on our user database by not
sanitizing user inputs before inserting them into the SQL
queries (CWE-89 [45]). This enables the attackers to insert
their commands into the SQL queries and access sensitive
user information from other services within the cluster. And
once the attackers gain initial access to the SSH server using
the weak credentials, they can execute commands of their
choice within the container. These vulnerabilities allow the
Application exploit and SSH server running inside container
techniques [30], [31] to be exploited by attackers.
Credential Access. After gaining shell access inside a con-
tainer through SSH, the attackers can attempt to establish
persistence, escalate privileges, or both. One possible way of
doing so is by gaining access to credentials of K8s service
accounts, which allows services running on a container to
identify themselves and send (privileged) commands to the
K8s API. We introduce a new service account on the frontend
container since it is the point for initial entry and authorize
it to retrieve the secrets in the default namespace from the
K8s API. The K8s secrets store sensitive information like
credentials for the user database and service account tokens.
So, by authorizing the service account access to the secrets,
we allow the attackers to exploit both List Kubernetes secrets
and Access container service account techniques from the K8s
threat matrix [30], [31].
Discovery and Lateral Movement. One of the prime dif-
ferences between the architecture of existing honeypots and
HONEYKUBE is that microservices use a distributed envi-
ronment with multiple computing devices and containers.
Hence, Discovery of other microservices and Lateral Move-
ment between containers and nodes is an important aspect that
attackers could exploit. The service account tokens retrieved
from the K8s secrets consist of the access token of another
vulnerable service account with increased permissions. These
permissions allow the attacker to list the services and endpoints
in the cluster while also authorizing them to update the
services. Since the scope of the containers is limited to the
libraries and packages required to run the application, we
install command-line tools like curl and wget to some of
the containers to facilitate the attackers in their attack. The
attackers can then use these tools to download whatever they
need to probe the network, increase their understanding of the
environment, and move within the cluster. In short, we allow
attackers to discover services using the Access the Kubernetes
API server and Network mapping techniques and enable lateral
movement through the Container service account and Cluster
internal networking techniques.

VI. SECURITY MODEL

We employ security measures to limit the damage that
attackers could cause if they succeed in getting complete

control of our system. We restrict all unnecessary network
traffic on the microservices; incoming traffic is allowed only
on ports SSH, HTTP, and HTTPS; outgoing traffic is al-
lowed only for HTTP and HTTPS. These policies prevent
outgoing spam emails and reduce the chances of the system
getting used for a DDoS attack. The containers in k8s have,
by default, root privileges using which the attackers can
escape the containers and gain access to the host machine.
We prevent this escape by configuring the microservice con-
tainers, using Pod Security Context [46], to use a non-
root and non-privileged user. For these configurations, we
set privileged: false, runAsNonRoot: true, and
allowPrivilegeEscalation: false. These settings
prevent a process from gaining more privileges than its parent
process and limit the damage the attackers can cause.

To ensure limited access to the control plane from appli-
cation containers, we enable the Role-Based Access Control
in GKE. We also configure the cluster to use shielded GKE
nodes to prevent a known vulnerability in GKE [47]. Addi-
tionally, we limit the resources (CPU and RAM) available to
each container to mitigate the execution of resource-intensive
programs, such as crypto-mining or performing DDoS attacks
from within the containers. Lastly, we add firewall policies to
limit SSH port access on the node machines to only authorized
IPs. We only allow the system we use for monitoring and
data collection to access the node systems. These policies
significantly reduce the possibilities for attackers to gain
access to the nodes and/or gain root access to the system.

VII. EXPERIMENTAL SETUP

We conduct two experiments, an open one, where we expose
HONEYKUBE to the Internet, and a controlled one, where we
expose it to a set of recruited participants.

Environment. The HONEYKUBE cluster consists of 4 nodes
and a control plane; the node machines use an E2 series high
CPU machine with 4 vCPU and 4GB memory. We use Ubuntu
OS in the nodes instead of the default Container-Optimized OS
due to its support for Sysdig in GKE nodes.

Ethical Considerations. We reduce the risk of the misuse
of the system by employing the security measures described
in Section VI. The participants for the controlled experiment
were volunteers who were briefed about the activity and had
signed a consent form. We received approval from the ethics
committee of our institution for both experiments.

Open Experiment. Recall that in k8s, Ingress exposes the ser-
vices to the Internet using HTTP(S) protocols. For this experi-
ment, we configure Ingress [48] to expose HONEYKUBE to the
Internet using HTTPS protocol with a TLS certificate issued by
the Let’s Encrypt Certificate Authority. Since the Ingress load
balancer in GKE only allows exposure of HTTP(S) ports, we
expose the OpenSSH server on the frontend pod as a separate
service on a separate IP. We add this IP to the robots.txt file
to leak it to the attackers.

Controlled Experiment. We recruited two groups of par-
ticipants for this experiment. One group included volunteers



from our local CTF team. This group had no prior experience
with Kubernetes or any microservices environments. The other
group included volunteers from the red team of a medium-
sized security operations company. The expertise levels of the
members of this group varied from intermediate to high. The
participants were given the instructions to attempt to infiltrate
the honeypot and get access to the user’s private information
from the user database.

For this experiment, we restrict access to the HONEYKUBE
to the participants’ IP addresses. HONEYKUBE settings for
the two experiments are identical except for one difference.
In the controlled experiment, we directly expose the service
(without Ingress) with a self-signed certificate, keeping the
SSH service on the same IP address. With this experiment,
we simulate targeted attacks on the system.

VIII. EXPERIMENTAL RESULT

A. Collected Datasets

We deployed HONEYKUBE on two separate clusters on
GKE, one for each experimental setting. The open experiment
was active for two weeks, while the controlled experiment was
active for three weeks. We collected approximately 850 GB
of data from the two experiments, consisting of system trace
files, network trace files, and various log files.

System Trace Files. The system trace files (.scap files)
capturing the system calls (with Sysdig) comprise most of
the collected dataset (∼800 GB). The collection of these
trace files was triggered whenever an alert was raised about
suspicious activity in the system. Falco raised an alert for every
SSH attempt and successful entry into the system. Since the
open honeypot witnessed recurring brute-force attacks, Sysdig
recorded a large number of trace files. We process these files
to extract the executed system calls, their arguments, and
execution timestamps.

Network Trace Files. The network trace files (.pcap files)
were captured and stored in each pod. We collected approxi-
mately 8 GB of network trace files from the two experiments
combined. These trace files recorded all inbound and outbound
network traffic from every microservice.

K8s Audit Logs. Each request to the K8s API generates an
audit event at every stage of its execution. These requests get
recorded in the K8s audit logs. The collected log files amount
to around 40 GB of data. The logs are stored in text files
(*.json). These logs can help identify the effect of attackers’
actions on the cluster as a whole.

Falco Logs. Falco stores all the events (alerts and otherwise)
in log files. Since Falco is a security tool for cloud-native
systems like K8s, its logs also contain details like pod names
and container images where the alert was triggered. These
details provide a better view of the attackers’ movements and
actions inside the cluster. The logs are stored in JSON files.

System Logs. All the default (debug) logs generated by the
application containers and the audit logs generated by the
nodes’ OS are grouped under this category. We also collected

the records of the login attempts (username and IP address)
from the SSH server on the fronted service. All of these logs
are stored in text files. We keep all these logs to provide
context to the attackers’ behavior, which can be identified by
processing the collected data.

B. Fingerprintability

We used the Shodan [35] Honeyscore3 tool to evaluate the
fingerprintability of our HONEYKUBE. Honeyscore takes an
IP address as input and fingerprints the corresponding device,
computing the probability of the device being a honeypot. The
output value ranges from 0.0 (real machine) to 1.0 (honeypot).

Although the details behind the computation of these
Honeyscores are not publicly available, previous works [16]
specify the criteria used for scoring honeypots (according to
Shodan’s developer): a) a large number of open network ports;
b) the active service is not a match for the environment,
e.g., ICS device running on GCP; c) markers from known
honeypots like configuration settings; d) once a system is
identified as a honeypot, it most likely remains as a honeypot
even after changing its configuration; e) a machine learning
classification algorithm (not disclosed); f) known honeypots
use the same configurations.

The Honeyscore tool assigned a value of 0.0 to our HON-
EYKUBE, which means this tool identified HONEYKUBE as a
real system. The low score demonstrates the low fingerprint-
ability of HONEYKUBE as a honeypot by this state-of-the-
art reconnaissance tool. Since there are no known honeypots
designed using the microservices architecture, it is safe to
say that the Honeyscore tool has not yet been configured
with fingerprintable markers to identify honeypots in this
environment. Hence, this tool might not provide a reliable
method to measure the fingerprintability of our honeypot.
Nonetheless, its evaluation does suggest that HONEYKUBE
is not overtly identifiable as a honeypot.

C. Observations

We observed differences in the type of attacks witnessed by
the two experiments.

Open Experiment. Within two weeks, the SSH server
recorded approximately 11,500 login attempts from more
than 200 distinct IP addresses, originating from 36 different
countries. Only 12 out of approx. 11,500 successfully infil-
trated the SSH server. Most of these immediately disconnected
from the server after logging in, and the server continued
to record more brute-force login attempts from those IP
addresses. The timestamps and the haphazard nature of these
attempts indicate automated brute-force attacks, most likely
executed by bots scanning the internet for vulnerabilities.
Table I lists the top five origins of these login attempts.

The SSH server logs recorded the usernames used for
the login attempts. We observed 36 different usernames in
these attempts. The most commonly observed usernames were
root, user, tech, demo, and telecomadmin. By finding

3https://honeyscore.shodan.io/

https://honeyscore.shodan.io/


Country Number of Attempts

United States 2114
Vietnam 1946
Russian Federation 757
Pakistan 597
Albania 595

TABLE I: Top countries and the corresponding number of login attempts recorded
on the SSH server

the vulnerable entry point to the cluster, the attackers got initial
access to the honeypot.

A few of the attacks extended beyond just a successful
entry. These attacks were able to infiltrate the cluster by
brute-forcing the credentials of the SSH server. Once inside,
these attacks attempted to execute system calls to meet their
malicious requirements. The system calls captured from these
attacks show a wide variety of behaviors. There was an
attempt to mine Monero coins in one attack. A few others
attempted to search for active crypto mining processes by
using grep to find “Miner” or “miner” in the list of running
processes. Whereas one read and deleted the system logs
from the /var/log directory of the container. This is a
classic example of Defence Evasion with an attacker covering
their tracks [30], [31]. Based on the timestamps of these
recorded system calls, it is evident that they were executed
automatically, without manual intervention, or in the form of
a script. Only one set of captured system calls consisted of
delays between the commands, as shown in Figure 3. From the
commands, it appears that there was an attempt to connect the
container to a Dynamic Host Configuration Protocol (DHCP)
server to achieve persistence in their connection to the cluster.
We inferred this as possibly a manually executed attack.

Additionally, the cluster nodes recorded several brute-force
login attempts as well. In Linux, all login attempts get logged
under the /var/log directory by the login process. Suc-
cessful and unsuccessful login attempts get stored in separate
binary files (wtmp and btmp respectively). btmp files log
the usernames, source IP addresses, and timestamps of all the
failed login attempts. We observed that these attempts dated
back to the creation of the cluster and not just the active
period of the experiment. The attempts used 4000 distinct
IP addresses, originating from 105 different countries.
Controlled Experiment. With this setting, we simulated a
targeted attack scenario. Since the participants knew that
HONEYKUBE was a honeypot, they approached it directly
by searching for different vulnerabilities to exploit. The sys-

17:02:00 <NA>) l s − l a
17:02:08 <NA>) sudo − i
17:02:12 <NA>) top
17:02:29 <NA>) . / . dhpcd −o 88.99.2 xx . xx :80
17:02:37 <NA>) dmesg
17:02:37 <NA>) t a i l
17:02:40 <NA>) top −bn1

Fig. 3: The set of captured system calls from the possible manual attack

tem logs retrieved from the containers show breach attempts
on multiple interfaces. The two groups of participants used
different techniques in their attacks. The CTF group had no
prior experience with k8s. They manually searched the web
platform for vulnerabilities and performed brute force attacks
on the frontend service to gain access to the cluster. They
mainly used root and admin as the username for the brute
force attacks to get the credentials of the SSH server. While
the group with the red team performed automated searches to
find hidden web pages, automated SQL injection attacks on
the user database via the API, and SSH brute-force attacks.
They successfully retrieved data from the user database and
used those credentials in their attempt to log into the SSH
server as well. The infiltration tactics used by the participants
are in line with the Initial Access and Execution tactics of the
K8s threat matrix [30], [31].

We recorded nearly 1,500 system calls executed by the
participants in this setting. Through these system calls, we
observed that all the participants focused on identifying and
understanding their environment, even though they used dif-
ferent approaches. The group of participants new to k8s
downloaded generic tools like nmap[34] and linPEAS[49]
to understand their environment. They manually searched the
directory structure for clues and stumbled upon the service
account tokens mounted on the container. Whereas the group
familiar with k8s used k8s-specific tools like kubectl [50]
and peirates [51], a K8s penetration tool, to assist in
the discovery process. With peirates, these participants
directly found the service account tokens. They then used
the tokens to query the K8s API and get the list of services
and secrets. The K8s secrets contained the credentials for the
MySQL server. We noted that most participants attempted to
connect to the database server with these credentials.

D. Discussion of Results

Our research shows that a honeypot developed using the mi-
croservices architecture is invariably different in design from
one developed using monolithic architecture. As discussed
in the previous section, most of the attacks recorded in the
open setting were automated attacks. These were, most likely,
executed by bots looking for vulnerable systems to add to their
botnet or mine cryptocurrencies. None of the attacks recorded
in the open setting specifically targeted the microservices or
k8s environment. Neither were they designed to adapt to their
environment. Hence, the attack behavior observed through the
collected data in this setting did not vary from the monolithic
systems.

We do not believe that the attack where the attacker read and
deleted the system log files was successful since the container
did not have the privilege to perform those actions on the node
machine. And the system calls were recorded on the node
level. So, they could not have been tampered with without
getting access to the node machine. The attack attempt flagged
as a possible manual attack 3 initiated a connection with a
DHCP server. From the captured network traffic, we observed
that it succeeded in establishing the connection. Unfortunately,



this attack was performed just the day before the end of our
open experiment. So, there is no way to know the attacker’s
plans for this connection.

The containers in a microservices architecture have a limited
scope of capabilities. With the security measures employed for
HONEYKUBE, the automated attacks were thwarted as they
failed to gain root access. An example was the attempt to
delete the system log files, which failed due to the lack of root
access. Similarly, the attempts to mine cryptocurrencies failed
due to the lack of root credentials and limited resources (CPU
and memory) containers have at their disposal, as mining is a
resource-intensive process.

The data collected from the controlled setting provides
a much better outlook into the attackers’ behavior when
exploiting a microservices architecture. Even though the initial
access points into the cluster were similar to those from the
monolithic system, the actions needed for further exploita-
tion, such as privilege escalation, were notably different. We
observed from the system calls captured from the controlled
experiment that participants using linPEAS switched to k8s-
specific methods of discovering the environment after running
this script. Since the k8s-specific penetration tools, such as
peirates, are far more effective in obtaining credentials
and enabling lateral movement within the cluster.

Lastly, we observed that the numerous components inside a
microservices architecture are a challenge for security due to
the number of interfaces available for the attacker to exploit.
In the open setting, we saw this from the attacks on the
cluster nodes. While in the controlled experiment, it became
evident from the attempts to breach the system via different
interfaces. In this research, we saw the differences in attackers’
behaviors when attacking microservices architecture due to
the larger attack surface. The extent of these differences still
needs to be explored further. Repeating this experiment for a
longer duration and analyzing the data collected, in addition
to analyzing the data collected from this research, can help
improve our understanding of these differences and improve
the quality of the tools we develop to secure microservices
architectures.

IX. LIMITATIONS AND FUTURE WORK

Here we discuss the limitations of our design and the
different ways this research can move forward in the future.
Interaction Level. The quality of the collected data depends
on the level of interaction given to the attackers. This inter-
action surface depends on the vulnerabilities in the given en-
vironment to facilitate the attackers’ movements. We injected
vulnerabilities into HONEYKUBE to enable the attackers to
perform various tactics, including but not limited to credential
access, discovery, and lateral movement. Despite the injected
vulnerabilities, the attackers’ movements within the system
were a bit restricted, restraining the level of infiltration they
could achieve. Adding more vulnerabilities along the entire
cyber kill chain will allow higher mobility and a deeper
infiltration by the attackers. Ultimately, this will facilitate the
collection of higher-quality data about real-world attacks.

Monitoring and Data Collection. The monitoring mecha-
nism we designed to capture the executed system calls for
HONEYKUBE can be further improved. Our current design
will only work if most of the attackers’ actions inside the
containers trigger alerts in Falco. If that is not the case, we
might miss some activities inside the cluster. For example,
in a scenario where the attackers enter the system and wait
before starting to dig into it with benign commands like ls
or ps, our monitoring system will not capture it. Secondly, the
trigger mechanism used to capture system calls can be made
more precise by avoiding collecting unnecessary system trace
files. This can be achieved by sending triggers only to the node
experiencing activities instead of all the nodes. Additionally,
the practical implementation of the current design requires
some improvements, as we observed some missing system
trace files when the trigger mechanism failed. A more efficient
method to trigger the storage of system calls can help improve
the coverage of the collected data.

Experiment Duration. The types of observed attacks on
the open honeypot indicate that mainly the automated bots
discovered it, with only one of them possibly involving manual
intervention. Hence, the honeypot did not reach its target
audience, i.e., human attackers. Potentially, we can solve this
problem by collecting the data for a longer duration. Or better
yet, we can distribute the link to the honeypot across the
dark web to attract more genuine attacks and facilitate data
collection from targeted or manual attacks.

Future Work. For future work, we plan to conduct a thorough
analysis of the collected data to identify attack patterns and
tools used by the attackers in exploiting microservices archi-
tecture. We also aim to repeat this experiment with different
orchestrating and deployment platforms. The data collected
from all of these experiments will be able to provide a better
understanding of the attack surfaces of generic microservices
architecture and not tied to specific platforms. The analysis of
this data will assist in devising better security mechanisms for
microservices-based applications.

X. RELATED WORK

With microservices and K8s taking the industry by storm,
there has been plenty of research towards understanding their
threat landscape and improving their security. In 2019, Tien
et al. proposed KubAnomaly [52], which uses neural network
approaches to create classification models that identify anoma-
lies in the K8s environment. The resilience approach proposed
by Baarzi et al. [53] focuses on preventing DDoS attacks
by monitoring the resource usage of the microservices and
quarantining them on a separate node on the identification of
any abnormality. Works like the Cloud-native sandboxes [54]
and Sandnet [55] use sandboxing techniques to record threat
activities. The Cloud-native sandboxes focus on context-aware
sandboxing techniques; Sandnet focuses on identifying com-
promised microservices and quarantining them in a sandboxed
environment to monitor the threat in action. While Sandnet’s
goal is similar to ours with the HONEYKUBE, it had a few



limitations. Firstly, the design can handle only one intrusion at
a time. So, multiple adversaries within the same time frame are
out of scope. Secondly, it only focuses on the network traffic
behaviors of the attackers even after entering the cluster.

Although not much precedence exists in honeypots utilizing
microservices architecture, there has been plenty of research
towards innovative honeypots to catch up with the ever-
evolving technology. As a result of the various cyberattacks on
industries using Industrial Control Systems (ICS) like Stuxnet,
Triton, and WannaCry, researchers designed varying honeypots
emulating ICS systems [14]–[16], [56]–[58]. These honeypots
aimed to improve the understanding of the threat landscape of
ICS. One such high interaction honeypot [14], by Trend Micro
Research, emulated a smart-factory solution for a fictitious
company. The realistic factor of the solution was increased by
adding the company backstory and employee contact details.
During the seven months of activity, the honeypot recorded
a large variety of cyberattacks like cryptocurrency mining as
part of a botnet, multiple ransomware attacks, fingerprinting
attacks with scanners, and many control systems attacks on
the Programmable Logic Controllers (PLCs) in the system.
While the data collected from this research gives a detailed
view of the attacker’s actions and motivations, this honeypot
also highlights the underlying risks of using high-interaction
honeypots. Overcoming the limitations of existing honeypot
implementations for ICSs [56]–[58], HoneyPLC [16] devel-
oped high-interaction honeypots for PLCs within ICS. PLCs
control critical systems like centrifuge machines in nuclear
power plants. HoneyPLC proved its covertness by evaluating
itself using Shodan, the state-of-the-art reconnaissance tool,
and receiving a HoneyScore of 0.0. Some other innovative
honeypots include HoneyMix [36], a software-defined net-
working (SDN) honeynet proposed to mitigate fingerprinting
techniques, and “Honeypots-as-a-service” (HaaS) [13], which
provides a scalable and flexible plug-and-play service for
industrial honeypots.

XI. CONCLUSION

In this research, we introduced HONEYKUBE, a web honey-
pot designed using the microservices architecture. The main
objective of the HONEYKUBE is to collect interaction data
from real-world attacks. We used a real-world application as
a baseline for HONEYKUBE to make it harder to fingerprint
it as a honeypot. Furthermore, we increased the interaction
surface of the honeypot by injecting vulnerabilities to improve
the quality of the collected data. Through our experiments, we
showed that the monitoring setup we devised for this archi-
tecture is effective in recording attackers’ actions. We expect
that our work and the collected data will foster new research
to improve the security of microservices-based applications.

ACKNOWLEDGMENTS

We would like to thank our reviewers for their valuable
comments. This work has been supported by the INTERSECT
project, Grant No. NWA 1160.18.301, funded by Netherlands

Organisation for Scientific Research (NWO). The findings
reported herein are the sole responsibility of the authors.

REFERENCES

[1] ReportLinker, “Global cloud microservices market to reach $4.1
billion by 2030,” Feb 2023. [Online]. Available: https://www.
globenewswire.com/en/news-release/2023/02/01/2599585/0/en/Global-
Cloud-Microservices-Market-to-Reach-4-1-Billion-by-2030.html

[2] A. Gluck, “Introducing domain-oriented microservice architecture,”
Jul 2020. [Online]. Available: https://eng.uber.com/microservice-
architecture/

[3] K. Varshneya, “Understanding design of microservices architecture
at netflix,” Dec 2021. [Online]. Available: https://www.techaheadcorp.
com/blog/design-of-microservices-architecture-at-netflix/

[4] E. Montalbano, “380k kubernetes api servers exposed to public
internet,” May 2022, [Date Accessed: 21 February 2022]. [Online].
Available: https://threatpost.com/380k-kubernetes-api-servers-exposed-
to-public-internet/179679/

[5] T. Seals, “Argo cd security bug opens kubernetes cloud
apps to attackers,” Feb 2022, [Date Accessed: 21 February
2022]. [Online]. Available: https://threatpost.com/argo-cd-security-bug-
kubernetes-cloud-apps/178239/

[6] G. Singer, “Threat alert: Kinsing malware attacks targeting
container environments,” Nov 2020, [Date Accessed: 21 February
2022]. [Online]. Available: https://blog.aquasec.com/threat-alert-
kinsing-malware-container-vulnerability

[7] C. Cimpanu, “Vast majority of cyber-attacks on cloud servers aim
to mine cryptocurrency,” Sep 2020, [Date Accessed: 21 February
2022]. [Online]. Available: https://www.zdnet.com/article/vast-majority-
of-cyber-attacks-on-cloud-servers-aim-to-mine-cryptocurrency/

[8] L. Vaas, “Windows container malware targets kubernetes clusters,” [Date
Accessed: 21 February 2022]. [Online]. Available: https://threatpost.
com/windows-containers-malware-targets-kubernetes/166692/

[9] T. Seals, “Poorly secured docker image comes under rapid attack,” April
2020, [Date Accessed: 21 February 2022]. [Online]. Available: https:
//threatpost.com/poorly-secured-docker-image-rapid-attack/154874/

[10] A. El Khairi, M. Caselli, C. Knierim, A. Peter, and A. Continella,
“Contextualizing system calls in containers for anomaly-based intrusion
detection,” in Proceedings of the ACM Cloud Computing Security
Workshop (CCSW), November 2022.

[11] Y. Lin, O. Tunde-Onadele, and X. Gu, “Cdl: Classified distributed
learning for detecting security attacks in containerized applications,” in
Proceedings of the Annual Computer Security Applications Conference
(ACSAC), 2020.

[12] L. Spitzner, “The honeynet project: Trapping the hackers,” IEEE Security
& Privacy, vol. 1, no. 2, pp. 15–23, 2003.

[13] J. H. Jafarian and A. Niakanlahiji, “Delivering honeypots as a service,”
Proceedings of the Annual Hawaii International Conference on System
Sciences, Jan 2020.

[14] S. Hilt, F. Maggi, C. Perine, L. Remorin, M. Rösler, and
R. Vosseler, “Caught in the act: Running a realistic factory
honeypot to capture real threats,” Jan 2020. [Online]. Available:
https://documents.trendmicro.com/assets/white papers/wp-caught-in-
the-act-running-a-realistic-factory-honeypot-to-capture-real-threats.pdf

[15] P. Ferretti, M. Pogliani, and S. Zanero, “Characterizing background noise
in ics traffic through a set of low interaction honeypots,” Proceedings
of the ACM Workshop on Cyber-Physical Systems Security & Privacy,
Nov 2019.
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[36] W. Han, Z. Zhao, A. Doupé, and G.-J. Ahn, “Honeymix : Toward sdn-
based intelligent honeynet,” Proceedings of the ACM International Work-
shop on Security in Software Defined Networks & Network Function
Virtualization, March 2016.

[37] GoogleCloudPlatform, “Googlecloudplatform/microservices-demo:
Sample cloud-native application with 10 microservices showcasing
kubernetes, istio, grpc and opencensus.” [Date Accessed: 21 February
2022]. [Online]. Available: https://github.com/GoogleCloudPlatform/
microservices-demo

[42] Cvedetails.com, “Vulnerability details : Cve-2019-9741,” [Date
Accessed: 21 February 2022]. [Online]. Available: https:
//www.cvedetails.com/cve/CVE-2019-9741/

[38] Draios, “Draios/sysdig: Linux system exploration and troubleshooting
tool with first class support for containers,” [Date Accessed: 21
February 2022]. [Online]. Available: https://github.com/draios/sysdig

[39] Falcosecurity, “Falcosecurity/falco: Cloud native runtime security,”
[Date Accessed: 21 February 2022]. [Online]. Available: https:
//github.com/falcosecurity/falco

[40] J. Haleby, “Johanhaleby/kubetail: Bash script to tail kubernetes logs
from multiple pods at the same time,” [Date Accessed: 21 February
2022]. [Online]. Available: https://github.com/johanhaleby/kubetail

[41] “Information disclosure vulnerabilities,” [Date Accessed: 21
February 2022]. [Online]. Available: https://portswigger.net/web-
security/information-disclosure

[43] “Cwe-1391: Use of weak credentials,” [Date Accessed: 29 March 2023].
[Online]. Available: https://cwe.mitre.org/data/definitions/1391.html

[44] “Cwe-79: Improper neutralization of input during web page generation
(’cross-site scripting’),” [Date Accessed: 29 March 2023]. [Online].
Available: https://cwe.mitre.org/data/definitions/79.html

[45] “Cwe-89: Improper neutralization of special elements used in an sql
command (’sql injection’),” [Date Accessed: 29 March 2023]. [Online].
Available: https://cwe.mitre.org/data/definitions/89.html

[46] “Configure a security context for a pod or container,” [Date Accessed:
21 February 2022]. [Online]. Available: https://kubernetes.io/docs/tasks/
configure-pod-container/security-context/

[47] M. Wickenden, “Hacking kubelet on google kubernetes engine,”
Nov 2018. [Online]. Available: https://www.4armed.com/blog/hacking-
kubelet-on-gke/

[48] “Ingress for external http(s) load balancing — kubernetes engine
documentation — google cloud,” [Date Accessed: 21 February 2022].
[Online]. Available: https://cloud.google.com/kubernetes-engine/docs/
concepts/ingress-xlb

[49] C. Polop, “Peass-ng/linpeas at master · carlospolop/peass-ng,” [Date
Accessed: 21 February 2022]. [Online]. Available: https://github.com/
carlospolop/PEASS-ng/tree/master/linPEAS

[50] “Kubectl,” [Date Accessed: 21 February 2022]. [Online]. Available:
https://kubernetes.io/docs/reference/kubectl/

[51] Inguardians, “Inguardians/peirates: Peirates - kubernetes penetration
testing tool,” [Date Accessed: 21 February 2022]. [Online]. Available:
https://github.com/inguardians/peirates

[52] C. Tien, T. Huang, C. Tien, T. Huang, and S. Kuo, “Kubanomaly:
Anomaly detection for the docker orchestration platform with neural
network approaches,” Journal of Engineering Reports, vol. 1, no. 5,
Dec 2019.

[53] A. F. Baarzi, G. Kesidis, D. Fleck, and A. Stavrou, “Microservices made
attack-resilient using unsupervised service fissioning,” Proceedings of
the European workshop on Systems Security (EuroSec), p. 31–36, April
2020.

[54] Z. Xu and T. Luo, “Cloud-native sandboxes for microservices: Under-
standing new threats and attacks,” Blackhat Europe, 2019.

[55] A. Osman, P. Bruckner, H. Salah, F. H. Fitzek, T. Strufe, and M. Fis-
cher, “Sandnet: Towards high quality of deception in container-based
microservice architectures,” Proceedings of the IEEE International Con-
ference on Communications (ICC), May 2019.

[56] D. I. Buza, F. Juhász, G. Miru, M. Félegyházi, and T. Holczer, “Cryplh:
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